

The Team

Cian O'Donoghue Manufacturing

Lyes Djennadi Manufacturing

Alexander Rumball 3D Design

John Lane Arduino Control

Stefan Walshe Pro<u>gramm</u>ing

Josh Tanner M<u>aterials</u>

The Problem

Lack of Mobility

- 1 in 3 over 65 have difficulty.
- Walking, standing, steps etc.
- Researched current mobility assistive devices.

Gantry Hoists

- · Initially focused and researched
- · Really well developed.

Mission Statement
"We need to design and create a solution that
will allow the safe
moving of patients who have reduced mobility. It
must not impose too much work on both
the operator and the patient. The design could
either be retro-fitted or completely new."

reloped.

Mission Statement
"We need to design and create a solution that
will allow the safe
moving of patients who have reduced mobility. It
must not impose too much work on both
the operator and the patient. The design could
either be retro-fitted or completely new."

Zimmer Frames

- Basic and more advanced options.
- Scope for further development.
- What could be changed?

New Solution, Why?

- Make the Zimmer Frame more mobile.
- Reduce user's fatigue and therefore increase mobility
- Reduce social impacts.
 - "I can go for days without hearing from my family"

Refined Mission

retro fit or new Zimmer frame to assist/ ease in the safe movement of a person of the aging population."

Refined Mission Statement

"We want to design a retro fit or new Zimmer frame to assist/ ease in the safe movement of a person of the aging population."

The Zoomerframe

Ultrasonics

Power Source

Motorized wheels

How it works

Ultrasonic sensor sends out sound waves and waits for an echo

The arduino tells the H-Bridge what speed to turn the motors

Ardunino receives signal and converts time to distance

Emergency Stop!

Push to make switch mounted in the handles.

Wheels start turning

Ultrasonic sensor sends out sound waves and waits for an echo

Ardunino receives signal and converts time to distance

The arduino tells the H-Bridge what speed to turn the motors

Wheels start turning

Better Mobility!

Emergency Stop!

Push to make switch mounted in the handles.

Why it works:

- Tests in the lab showed the full system functioning properly.
- The frame is stable and unlikely to topple.
- No lifting required.
- Reduced user fatigue.

Why is it better?!

- Retrofit system.
 - Parts can be easily sourced.
 - · Low cost.
 - Increased mobility

"Our improved design eliminates the awkward clumsiness of zimmer frames, using ultrasonic sensors to detect presence in the frame and communicate with the motors using Arduino to drive the frame."

